Modal Extensions of Sub-classical Logics for Recovering Classical Logic

نویسندگان

  • Marcelo E. Coniglio
  • Newton M. Peron
چکیده

In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show that these systems are appropriate for interpreting as “is provable in classical logic”. This allows us to recover the theorems of propositional classical logic within three sub-classical modal systems. Mathematics Subject Classification (2010). Primary 03B45; Secondary 03B20, 03B53.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stone-Type Dualities for Separation Logics

Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because — in addition to elegant abstraction — they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality...

متن کامل

THE LATTICE OF BELNAPIAN MODAL LOGICS: Special Extensions and Counterparts

Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes (or rather sublattices) of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics

Godel's translation of intuitionistic formulas into modal ones provides the well-known embedding of intermediate logics into extensions of Lewis' system S4, which re ects and sometimes preserves such properties as decidability, Kripke completeness, the nite model property. In this paper we establish a similar relationship between intuitionistic modal logics and classical bimodal logics. We als...

متن کامل

On the relation between intuitionistic and classical modal logics

Intuitionistic propositional logic Int and its extensions, known as intermediate or superintuitionistic logics, in many respects can be regarded just as fragments of classical modal logics containing S4. At the syntactical level, the Godel translation t embeds every intermediate logic L = Int+ into modal logics in the interval L = [ L = S4 t( ); L = Grz t( )]. Semantically this is re ected by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Logica Universalis

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013